Skip to content

合作邀約 email: dr.fish@drfishstats.com

  • Facebook
  • X
site icon of Dr. Fish

Dr. Fish 漫游社會統計

魚博士的專業漫談和課後隨筆

  • Home
  • 關於Dr. Fish
  • 統計基礎
    • 入門概念
    • 圖形繪製
    • 描述統計
    • 相關
    • 線性迴歸
  • 統計進階
    • 推論統計
    • 統計檢定
      • 相關係數
      • 迴歸
      • 平均數比較
      • 無母數檢定
  • EXCEL系列
    • 資料管理
    • 圖形繪製
      • 匯出SPSS資料至Excel並繪製盒形圖
      • 如何使用Excel製作Q-Q plot
      • 如何使用Excel繪製加上誤差線的長條圖
    • 描述統計
      • 如何使用Excel執行次數分配
      • 如何使用Excel樞紐分析表製作次數分配表
      • 如何使用Excel計算偏態和峰態
      • 如何使用Excel尋找常態曲線下面積或分數
      • 如何使用Excel一次取得描述性統計量
      • 如何使用Excel計算共變異數
      • 如何使用Excel取得皮爾森積差相關係數
      • 如何使用Excel製作列聯表
    • 推論統計
      • 如何使用Excel計算信賴區間
      • 如何使用Excel執行符號檢定
      • 如何使用Excel執行單一樣本z檢定和t檢定
      • 如何使用Excel執行獨立樣本t檢定
      • 如何使用 Excel 執行 Levene 檢定
      • 如何使用 Excel 執行 Welch t 檢定
      • 如何使用Excel執行關聯樣本t檢定
      • 如何使用Excel執行單因子變異數分析
      • 如何使用Excel執行簡單線性迴歸
      • 如何使用Excel計算最小平方迴歸線的預測區間
      • 如何使用Excel執行卡方獨立性檢定
  • 下課後
    • 生活
    • 旅遊
      • 日本
    • 美食
    • 攝影
  • 聯絡Dr. Fish
  • Home
  • 推論統計
  • 統計檢定
  • 無母數檢定
  • Dunn檢定:Kruskal-Wallis檢定的事後成對比較

🐟 請您尊重本網站的智慧財產權,如有任何引用,請註明出處:Dr. Fish 漫游社會統計。(文章發表日期)。文章名稱。文章網址

Dunn檢定:Kruskal-Wallis檢定的事後成對比較

Posted on 2023-07-112023-07-11 By Dr. Fish
無母數檢定

Kruskal-Wallis檢定是用來探討3個或3個以上的獨立群組是否有所不同的一種無母數檢定,適用在單因子變異數分析的基本假設受到嚴重違反,或依變項測量尺度不是等距或比率尺度的時候。當Kruskal-Wallis檢定達到統計上顯著時,僅指出群組間存在差異,但無法得知群組間如何不同。若想進一步瞭解成對群組間的差異,須執行Dunn檢定,就是Kruskal-Wallis檢定的事後成對比較。

本篇文章為Kruskal-Wallis檢定的延伸,建議您先閱讀Kruskal-Wallis檢定的假設檢定,將有助於下面內容的銜接和理解。以下將先介紹Dunn檢定的使用時機,再解釋Dunn檢定的成對比較方法並舉例說明,最後示範利用SPSS執行Dunn檢定的操作過程。

  • Dunn檢定的使用時機
  • Dunn檢定的成對比較方法
  • Dunn檢定的範例操作
  • 運用SPSS執行Dunn檢定

Dunn檢定的使用時機

Kruskal-Wallis檢定是類似於獨立群組的單因子變異數分析(以下簡稱「單因子變異數分析」)的一種統計檢定方法,因為適用在單因子變異數分析的常態分配和/或變異數同質性的基本假設受到嚴重違反,或依變項為次序尺度的時候,所以屬於一種無母數檢定。

單因子變異數分析是一種綜合檢定(omnibus test),也就是說當單因子變異數分析的F值達到統計上顯著時,僅代表整體群組間存在差異,但不清楚群組間如何地不同。若想瞭解哪些成對群組間存在差異,須進一步執行單因子變異數分析的事後比較,例如Tukey HSD檢定、REGWQ檢定、Scheffé檢定或Dunnett檢定。

同樣地,Krusal-Wallis檢定也是一種綜合檢定,當Kruskal-Wallis檢定的H檢定統計量達到統計上顯著時,只表示所有群組不是來自於極為相似的母群體,但群組間如何地不同則無從得知。為了探討群組和群組之間是否存在差異,須執行Kruskal-Wallis檢定的事後比較,而最常用的方法即為Dunn檢定(Dunn´s test),可用來進行成對群組的比較。

因此,Dunn檢定是Kruskal-Wallis檢定的假設檢定過程中,在檢定統計量達到統計上顯著並拒絕虛無假設後,用來更深入探討哪些成對群組間存在差異的一種事後比較方法。

Dunn檢定的成對比較方法

Dunn檢定是由Dunn(1964)提出,利用Kruskal-Wallis檢定的H檢定統計量計算過程中各個群組的等級總和,並使用z檢定和常態分配來評估成對群組之間的差異。Dunn檢定的z檢定統計量公式如下:

(1)   \begin{equation*}z = \frac {y}{\sigma} = \frac {\overline R_i-\overline R_j}{\sqrt {\left [ \dfrac {N(N+1)}{12}-\dfrac {\sum_{s=1}^r (t_s^3-t_s)}{12(N-1)} \right ] \left ( \dfrac {1}{n_i}+\dfrac {1}{n_j} \right )}}\end{equation*}

    \begin{equation*}\begin{CJK*}{UTF8}{bsmi}\begin{align*}y &= \text {兩個群組平均等級的差值} \\\sigma &= \text {兩群組平均等級差值的標準差} \\R_i &= \text {成對比較的第1個群組之平均等級} \\R_j &= \text {成對比較的第2個群組之平均等級} \\n_i &= \text {成對比較的第1個群組之個數} \\n_j &= \text {成對比較的第2個群組之個數} \\r &= \text {資料裡相同分數的組數} \\t_s &= \text {第$s$組相同分數的數值個數} \\N &= \text {樣本總個數}\end{align*}\end{CJK*}\end{equation*}

從上面的公式可看出,若資料裡存在相同等級,Dunn(1964)調整了成對比較y的標準差\sigma。如果資料裡不存在相同等級,則上面的公式可簡化成下面的公式:

(2)   \begin{equation*}z = \frac {y}{\sigma} = \frac {\overline R_i-\overline R_j}{\sqrt {\left [ \dfrac {N(N+1)}{12} \right ] \left ( \dfrac {1}{n_i}+\dfrac {1}{n_j} \right )}}\end{equation*}

透過上面的公式(1)或(2)求得成對群組比較的z檢定統計量後,查詢標準常態分配表,找出獲得這統計量的絕對值或大於這統計量絕對值的機率(也就是超出z之外的常態曲線下面積),並將這機率乘以2即為雙尾檢定的p值,再和事先設定的顯著水準(α水準)相比較。

不過,為了控制因多個成對比較而膨脹的第一類型錯誤機率α,須對α進行調整。Dunn(1961)採用Bonferroni校正(Bonferroni adjustment),將原本設定的α水準除以成對群組比較的組數後,再利用這個調整後的α水準和p值相比較,最後透過決策規則去評估是否拒絕虛無假設。

Dunn檢定的假設檢定過程並沒有不同於其他統計檢定的假設檢定過程,若您不清楚或不熟悉假設檢定的步驟,可參考假設檢定的步驟和範例。瞭解了Dunn檢定的成對比較方法後,下面舉個例子來實際操作整個過程。

Dunn檢定的範例操作

這裡使用「Krusal-Wallis檢定的假設檢定」裡少年偏差行為者的居住環境和逃學天數的例子,因為這個例子裡Kruskal-Wallis檢定的H檢定統計量達到統計上顯著,為了進一步探討群組間如何地不同,所以利用Dunn檢定來執行成對群組的比較。

在這個例子裡,原生家庭(origin)、寄養家庭(foster)和團體家屋(group home)這3個群組的等級總和、個數分別如下表。此外,這例子裡有2組相同等級,而每一組相同等級裡的數值都是2個。

data of 3 groups for Dunn's test

因為有3個群組,所以可進行3組成對比較,分別為① origin vs. foster、② origin vs. group home、③ foster vs. group home。每組成對比較的虛無假設(H_0)皆為兩個群組是來自於極為相似的母群體,也就是兩個群組間不存在差異。另外,和Kruskal-Wallis檢定相同,顯著水準為0.05。

由於這個例子有相同等級的存在,所以須使用上面的公式(1)來計算每組成對比較的z檢定統計量。先把因為相同等級須作調整的部分計算出來,計算過程如下:

    \[ \frac {\sum_{s=1}^r (t_s^3-t_s)}{12(N-1)} = \frac {(2^3-2)+(2^3-2)}{12(18-1)} \approx 0.0588 \]

再將0.0588帶入公式(1)裡,並計算每組成對比較的z檢定統計量,3組的計算過程分別如下:

① origin vs. foster:

    \[ z = \frac {\dfrac {55}{6}-\dfrac {87}{6}}{\sqrt {\left [ \dfrac {18(18+1)}{12}-0.0588 \right ] \left ( \dfrac {1}{6}+\dfrac {1}{6} \right )}} \approx -1.732 \]

② origin vs. group home:

    \[ z = \frac {\dfrac {55}{6}-\dfrac {29}{6}}{\sqrt {\left [ \dfrac {18(18+1)}{12}-0.0588 \right ] \left ( \dfrac {1}{6}+\dfrac {1}{6} \right )}} \approx 1.407 \]

③ foster vs. group home:

    \[ z = \frac {\dfrac {87}{6}-\dfrac {29}{6}}{\sqrt {\left [ \dfrac {18(18+1)}{12}-0.0588 \right ] \left ( \dfrac {1}{6}+\dfrac {1}{6} \right )}} \approx 3.140 \]

接著,取3組z檢定統計量的絕對值,並查詢標準常態分配表,找出常態分配右側超過z統計量之外的常態曲線下面積,也是獲得z統計量的機率。由於這只是分配右側的機率,須再乘以2,也就是加上分配左側的機率後,才是雙尾檢定的機率(p值)。參考下表,3組的p值分別如下:

① origin vs. foster:p = 0.0418 \times 2 = 0.0836

② origin vs. group home:p = 0.0793 \times 2 = 0.1586

③ foster vs. group home:p = 0.0008 \times 2 = 0.0016

p-values of pairwise comparisons

為了將第一類型錯誤機率維持在α,須進行Bonferroni校正,把原本設定的α水準除以成對比較的組數後,再與各個p值相比較。若調整後的α水準稱為\alpha^{\prime},則在α水準為0.05、成對比較組數為3的情況下,這個研究的\alpha^{\prime}為:

    \[ \alpha^{\prime} = \frac {0.05}{3} \approx 0.0167 \]

最後,藉由機率比較的決策規則,比較每組的p值和\alpha^{\prime},當p \leq \alpha^{\prime}時,即達到統計上顯著,可拒絕虛無假設。三組當中,只有③ foster vs. group home達到統計上顯著(0.0016<0.0167)。這分析結果指出,住在寄養家庭和住在團體家屋的少年偏差行為者在逃學天數上有顯著的差異,從平均等級來看,團體家屋的少年偏差行為者之逃學天數少於寄養家庭的少年偏差行為者。

運用SPSS執行Dunn檢定

將少年偏差行為者的居住環境和逃學天數例子的資料輸入至SPSS資料編輯器裡,輸入完成後,點選功能表的分析 » 無母數檢定 » 獨立樣本,帶出「非參數化檢定:兩個或多個獨立樣本」視窗。關於SPSS資料輸入方法,請參考SPSS操作環境和資料輸入。

spss menu of Dunn's test

在「非參數化檢定:兩個或多個獨立樣本」視窗的「目標」標籤裡,您的目標是什麼?長方框裡選擇自動比較群組間的分佈(U)。

objective tab in the dialog box of nonparametric independent comparisons

在「欄位」標籤裡,將變項ABSENCE從左邊的欄位(F)移至右邊的檢定欄位(T)方框裡,變項GROUP則移至右下的群組(G)長框裡。

fields tab in the dialog box of nonparametric independent comparisons

在「設定」標籤下選取項目(S)的選擇檢定裡,點選自訂檢定(C),然後在比較群組間的分佈長方框裡,勾選Kruskal-Wallis單因子變異數分析(k個樣本),再從多重比較(N)的下拉選單裡選擇所有成對。SPSS預設的顯著水準為0.05,若您想變更,可在選取項目(S)的檢定選項裡修改。完成後,點選視窗下方的執行。

settings tab in the dialog box of nonparametric independent comparisons in spss

經過上述的操作步驟,SPSS會輸出Kruskal-Wallis檢定和事後成對比較Dunn檢定的分析結果。Kruskal-Wallis檢定的結果和透過分析 » 無母數檢定 » 舊式對話框 » K個獨立樣本的操作方法所得到的結果是一樣的,不過舊式對話框下K個獨立樣本的分析沒有事後比較的選項。

從下表可看出,這個研究的樣本總數為18、自由度為2、H檢定統計量為9.892。因為獲得這檢定統計量的機率(0.007)小於事先設定的α水準0.05,所以H檢定統計量達到統計上顯著,可以拒絕虛無假設。綜合檢定的Kruskal-Wallis檢定指出,少年偏差行為者的居住環境會影響逃學天數。

spss output of summary of Kruskal-Wallis test

SPSS還輸出一個盒形圖(盒鬚圖),顯示3個群組的相對位置。從下面的盒形圖可看出,原生家庭和團體家屋裡少年偏差行為者的逃學天數之分布狀態較相似,然而團體家屋裡少年偏差行為者的逃學天數明顯較少。相對地,寄養家庭裡少年偏差行為者的逃學天數不但較集中,且天數較多,但有一位逃學天數特別少的少年。

spss output of boxplot of Kruskal-Wallis test

事後成對比較的Dunn檢定分析結果會出現在如下的「GROUP的配對比較」表裡,表格裡「檢定統計量」為公式(1)的分子,也就是兩群組平均等級之差值,「標準錯誤」則為公式(1)的分母,也就是平均等級差值的標準差。

表格裡「標準檢定統計量」就是各組成對比較的z檢定統計量,origin vs. foster為-1.732、origin vs. group home為1.407、foster vs. group home為3.140,這些數值皆和上面紙筆計算的結果相同。「顯著性」為獲得z檢定統計量的雙尾檢定機率(p值),也和上面紙筆計算的結果相同,可藉由該欄和調整後α水準(\alpha^{\prime})的比較來評估研究結果。

spss output of Dunn's test

此外,SPSS還輸出一「調整顯著性」欄,這欄是將「顯著性」欄的p值乘以成對比較的組數後得到的機率值,可直接和原本設定的α水準相比較。換句話說,若調整顯著性的值等於或小於α水準,即達到統計上顯著,可拒絕虛無假設。從上表可看出,只有foster vs. group home這組達到統計上顯著(0.005<0.05),代表寄養家庭和團體家屋的少年偏差行為者在逃學天數上存在顯著的差異。

因此,使用SPSS的Dunn檢定來評估成對事後比較的結果時,除了透過「顯著性」欄的p值和調整後α水準(也就是\alpha^{\prime})的比較之外,也可透過「調整顯著性」欄的機率值和原本設定的α水準相比較。不論是哪一種決策規則,都可得到相同的結果,您可依據個人的喜好來做選擇喔。

以上為本篇文章對Dunn檢定的介紹,希望透過本篇文章,您瞭解了Dunn檢定的使用時機、成對比較的運算方法,也學會了利用SPSS執行Dunn檢定的操作過程。

若您喜歡本篇文章,請將本網站加入書籤,作為您的學習資源,並持續回訪本網站喔!另外,您也可以在Facebook和Twitter上找到我們喲!

參考資料

Dunn, O. J. 1961. Multiple comparisons among means. Journal of the American Statistical Association, 56(293), 52-64. https://doi.org/10.2307/2282330

Dunn, O. J. 1964. Multiple comparisons using rank sums. Technometrics, 6(3), 241-252. https://doi.org/10.2307/1266041

標籤: Bonferroni校正 Dunn檢定 Kruskal-Wallis檢定 p值 SPSS α水準 假設檢定 單因子變異數分析 常態分配 決策規則 測量尺度 盒形圖 盒鬚圖 第一類型錯誤 綜合檢定 虛無假設 顯著水準

文章導覽

❮ Previous Post: Kruskal-Wallis檢定的假設檢定
Next Post: 穿越綠色龍貓隧道的高雄輕軌 ❯

您可能也會喜歡

featured image of hypothesis test of Kendall's tau
肯德爾等級相關係數的假設檢定
featured image of goodness-of-fit test
卡方適合度檢定的假設檢定
featured image of hypothesis test of spearman rho
斯皮爾曼等級相關係數的假設檢定
featured image of Mann-Whitney U test
曼–惠特尼U檢定的假設檢定

關於 Dr. Fish

profile picture uploaded on July 5, 2024

喜歡求知和分析,所以一路讀到博士。也喜歡旅行、攝影、料理、看日劇,愛把複雜的思想和事物變簡單,是個有點宅也有點跳TONE的人。

支持 Dr. Fish

本網站經營和文章撰寫皆由Dr. Fish一人完成,投注許多時間和費用。若您喜歡任何一篇文章或覺得文章對您有幫助,請給我一些支持,買杯珍奶給我吧!您的支持不但能給我更多撰寫文章的動力,也可以讓這網站的經營持續下去喔!謝謝!😄

boba-icon
請我喝珍奶!
featured image of spss environment and data entry

下載專區

標準常態分配表

Student's t 分配臨界值表

F分配臨界值表

卡方分配臨界值表

斯皮爾曼等級相關係數臨界值表

Wilcoxon配對符號等級檢定臨界值表

曼–惠特尼U檢定臨界值表

Student化全距分配臨界值表

Dunnett檢定臨界值表(雙尾檢定)

單一樣本z檢定的SPSS語法

關於Dr. Fish漫游社會統計

本網站使用簡單易懂的文字解說社會統計,並示範軟體操作,同時有課後隨筆的分享,希望讀者在學習之餘,也能感受到生活的樂趣。

網站政策

著作權聲明 Copyright Notice
隱私權政策 Privacy Policy
免責聲明  Disclaimer

追蹤我們

Facebook
X(Twitter)

Copyright © 2021-2025 Dr. Fish 漫游社會統計. All rights reserved.