簡單線性迴歸的假設檢定 Posted on 2024-05-102024-05-10 By Dr. Fish 迴歸 簡單線性迴歸是涉及一個自變項和一個依變項的分析,兩變項間為不完全的線性關係,探討自變項的改變如何影響依變項的變化。簡單線性迴歸的假設檢定包含相關係數和斜率的假設檢定,檢驗兩變項之間的關係是否存在於母群體裡以及自變項是否對依變項的預測有顯著的幫助。
調整後相關係數的意義和計算 Posted on 2024-04-172024-04-17 By Dr. Fish 相關 皮爾森積差相關係數並不是母群體相關係數的不偏誤估計值,尤其是在樣本數很小的時候。為了能夠更正確地估計母群體相關係數,可以使用調整後相關係數,是一個去除偏誤的相關係數。調整後相關係數的計算公式很簡單,也可利用SPSS輸出的模型摘要裡的調整後R平方來計算取得。
如何使用Excel計算共變異數 Posted on 2023-11-262023-11-22 By Dr. Fish 相關 共變異數為基礎的相關性統計量,透過統計分析軟體可簡單地取得,也可以利用微軟的Excel來計算,有2種方法。第1種方法是運用資料分析工具,雖然可輸出共變異數矩陣,但僅可取得母群體共變異數。第2種方法是運用函數語法,可取得母群體共變異數,也可取得樣本共變異數。
共變異數的意義和計算 Posted on 2023-11-182023-11-18 By Dr. Fish 相關 共變異數是兩變項相關性的一種測量方法,用來探討一個變項和另一個變項共同變化的程度。共變異數的概念類似於變異數,只是變異數用在單一變項的變化上,而共變異數用在兩個變項的共同變化上。但是共變異數會隨著不同的測量單位而改變數值大小,因此很難解釋和進行比較。
測量尺度和相關係數的選擇 Posted on 2022-11-212022-11-21 By Dr. Fish 相關 相關係數的種類很多,其選擇最主要受到資料的分布型態和測量尺度的影響。不同的測量尺度有各自適用的相關係數,包括phi係數、點二系列相關係數、斯皮爾曼等級相關係數、肯德爾等級相關係數和皮爾森積差相關係數,而本篇文章將對測量尺度和相關係數的選擇做一彙整。